Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.


Proteinsi <p>Number of protein entries associated with this proteome: UniProtKB entries for regular proteomes or UniParc entries for redundant proteomes (<a href="/help/proteome_redundancy">more...</a>)</p> 2,629
Gene counti <p>This is the total number of unique genes found in the proteome set, algorithmically computed. For each gene, a single representative protein sequence is chosen from the proteome. Where possible, reviewed (Swiss-Prot) protein sequences are chosen as the representatives.</p> - Download one protein sequence per gene (FASTA)
Proteome IDi <p>The proteome identifier (UPID) is the unique identifier assigned to the set of proteins that constitute the <a href="">proteome</a>. It consists of the characters ‘UP’ followed by 9 digits, is stable across releases and can therefore be used to cite a UniProt proteome.<p><a href='/help/proteome_id' target='_top'>More...</a></p>UP000000256
Taxonomy351627 - Caldicellulosiruptor saccharolyticus (strain ATCC 43494 / DSM 8903 / Tp8T 6331)
StrainATCC 43494 / DSM 8903 / Tp8T 6331
Last modifiedFebruary 9, 2019
Genome assembly and annotationi <p>Identifier for the genome assembly (<a href="">more...</a>)</p> GCA_000016545.1 from ENA/EMBL
Pan proteomei <p>A pan proteome is the full set of proteins thought to be expressed by a group of highly related organisms (e.g. multiple strains of the same bacterial species).<p><a href='/help/pan_proteomes' target='_top'>More...</a></p> This proteome is part of the Caldicellulosiruptor owensensis (strain ATCC 700167 / DSM 13100 / OL) pan proteome (fasta)

Caldicellulosiruptor saccharolyticus (strain ATCC 43494 / DSM 8903) is a thermophilic (70 degrees Celsius), strictly anaerobic asporogenous bacterium phylogenetically associated with the Firmicutes. This organism was isolated from a thermal spring in New Zealand. It hydrolyses a variety of polymeric carbohydrates (cellulose, hemicellulose, pectin, a -glucan (starch, glycogen), b-glucan (lichenan, laminarin), guar gum) to acetate, lactate, hydrogen and CO2. Trace amounts of ethanol are formed as well. Phylogenetic analysis showed that it constitutes a novel lineage within the Bacillus/Clostridium subphylum of the Gram-positive bacteria. According to a recent study by the US Department of Energy and the National Renewable Energy Laboratory (DOE/NREL), the desired future biofuel producer would have several features that distinguish it from currently used microorganisms: (i) high yield and low product inhibition, (ii) simultaneous utilisation of sugars (cellulose, hemicellulose, pectin), and (iii) growth at elevated temperatures: robust thermophilic organisms, with a decreased risk of contamination. A bacterium that meets all these criteria is Caldicellulosiruptor saccharolyticus, which is anticipated to play an important role in the development of renewable energy. This thermophilic bacterium efficiently converts an extraordinarily wide range of biomass components to the potential energy source hydrogen. Importantly, pilot fermentation experiments revealed the simultaneous degradation of glucose and xylose. Comparison of its genome with that of related microbes, also with potential for energy production, is expected to result in a gain of fundamental insight in the metabolic capacity and its regulation. Follow-up studies will be aimed at exploiting that knowledge for the engineering of an optimised microbial energy production system.

Componentsi <p>Genomic components encoding the proteome</p>

Component nameGenome Accession(s)
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again