Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Molecular basis of hereditary methaemoglobinaemia, types I and II: two novel mutations in the NADH-cytochrome b5 reductase gene.

Higasa K., Manabe J.I., Yubisui T., Sumimoto H., Pung-Amritt P., Tanphaichitr V.S., Fukumaki Y.

Hereditary methaemoglobinaemia, caused by deficiency of NADH-cytochrome b5 reductase (b5R), has been classified into two types, an erythrocyte (type I) and a generalized (type II). We analysed the b5R gene of two Thai patients and found two novel mutations. The patient with type II was homozygous for a C-to-T substitution in codon 8 3 that changes Arg (CGA) to a stop codon (TGA), resulting in a truncated b5R without the catalytic portion. The patient with type I was homozygous for a C-to-T substitution in codon 178 causing replacement of Ala (GCG) with Val (GTG). To characterize effects of this missense mutation, we investigated enzymatic properties of mutant b5R (Ala 178 Val). Although the mutant enzyme showed normal catalytic activity, less stability and different spectra were observed. These results suggest that this substitution influenced enzyme stability due to the slight change of structure. In conclusion, the nonsense mutation led to type II because of malfunction of the truncated protein. On the other hand, the missense mutation caused type I, due to degradation of the unstable mutant enzyme with normal activities in patient's erythrocytes, because of the lack of compensation by new protein synthesis during the long life-span of erythrocytes.

Br. J. Haematol. 103:922-930(1998) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again