Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Vitamin D receptor stable transfection restores the susceptibility to 1,25-dihydroxyvitamin D3 cytotoxicity in a rat glioma resistant clone.

Davoust N., Wion D., Chevalier G., Garabedian M., Brachet P., Couez D.

Recently, 1,25-dihydroxyvitamin D3 (1,25-D3) and less hypercalcemic analogs were shown to exert a delayed cytotoxic effect on rat C6 glioma cells. 1,25-D3 induces in these cells a programmed cell death, accompanied by the induction of c-myc, p53 and gadd 45 genes. The involvement of the intracellular vitamin D receptor (VDR) remained to be determined. In this lethal process, we have investigated its role in a subclone of C6 cells, which was isolated on the basis of its resistance to 1,25-D3, and in which VDR expression was not detected either at the mRNA or protein levels. The stable transfection of a rat VDR cDNA into this clone restored its susceptibility to the cytotoxic effects of 1,25-D3. This phenomenon was accompanied by a dramatic upregulation of c-myc mRNA expression, as already described in a C6-sensitive clone. These results provide the first evidence that VDR expression, if not sufficient, is necessary to mediate 1,25-D3 cytotoxic effect in C6 glioma cells. Since VDR mRNA expression has been already reported in human brain tumors, our data imply that the identification of VDR expression could become a prerequisite in any strategy of glioma treatment with vitamin D analogs.

J. Neurosci. Res. 52:210-219(1998) [PubMed] [Europe PMC]

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health