Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Random mutagenesis of the poly(ADP-ribose) polymerase catalytic domain reveals amino acids involved in polymer branching.

Rolli V., O'Farrell M., Menissier-de Murcia J., de Murcia G.M.

Poly(ADP-ribose) polymerase (PARP) is a multifunctional nuclear zinc finger protein which participates in the immediate response of mammalian cells exposed to DNA damaging agents. Given the complexity of the poly(ADP-ribosylation) reaction, we developed a large-scale screening procedure in Escherichia coli to identify randomly amino acids involved in the various aspects of this mechanism. Random mutations were generated by the polymerase chain reaction in a cDNA sequence covering most of the catalytic domain. Out of 26 individual mutations that diversely inactivated the full-length PARP, 22 were found at conserved positions in the primary structure, and 24 were located in the core domain formed by two beta-sheets containing the active site. Most of the PARP mutants were altered in poly(ADP-ribose) elongation and/or branching. The spatial proximity of some residues involved in chain elongation (E988) and branching (Y986) suggests a proximity or a superposition of these two catalytic sites. Other residues affected in branching were located at the surface of the molecule (R847, E923, G972), indicating that protein-protein contacts are necessary for optimal polymer branching. This screening procedure provides a simple and efficient method to explore further the structure-function relationship of the enzyme.

Biochemistry 36:12147-12154(1997) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again