Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Spectroscopic and voltammetric characterisation of the bacterioferritin-associated ferredoxin of Escherichia coli.

Quail M.A., Jordan P., Grogan J.M., Butt J.N., Lutz M., Thomson A.J., Andrews S.C., Guest J.R.

The bacterioferritin-associated ferredoxin (Bfd) of Escherichia coli is a 64-residue polypeptide encoded by the bfd gene located upstream of the gene (bfr) encoding the iron-storage haemoprotein, bacterioferritin. The Bfd sequence resembles those of the approximately 60-residue domains found in NifU proteins (required for metallocluster assembly), nitrite reductases, and Klebsiella pneumoniae nitrate reductase. These related-domains contain four well-conserved cysteine residues, which are thought to function as ligands to a [2Fe-2S] cluster. The Bfd protein was over-produced, purified, and characterised. Bfd was found to be a positively-charged monomer containing two iron atoms and two labile sulphides. Ultraviolet-visible, EPR, variable-temperature magnetic-circular dichroism and resonance Raman spectroscopies, together with cyclic voltogram measurements, revealed the presence of a [2Fe-2S]2+,+ centre (E1/2 = -254 mV) having remarkably similar properties to the Fe-S cluster of NifU. Bfd may thus be a 2Fe ferredoxin participating either in release/delivery of iron from/to bacterioferritin (or other iron complexes), or in iron-dependent regulation of bfr expression.

Biochem. Biophys. Res. Commun. 229:635-642(1996) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again