Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Modeling of a mutation responsible for human 3-hydroxy-3-methylglutaryl-CoA lyase deficiency implicates histidine-233 as an active site residue.

Roberts J., Mitchell G.A., Miziorko H.M.

3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) lyase is inactivated by diethyl pyrocarbonate (DEPC); activity can be fully restored by incubation with hydroxylamine. Protection against DEPC inactivation is afforded by a substrate analogue, suggesting an active site location for a DEPC target. Included in the inherited defects that map within the HMG-CoA lyase gene is a point mutation that results in an arginine substitution for histidine 233, one of only two invariant histidines. These observations prompted a functional test of the importance of His-233. The mutant lyases H233R, H233A, and H233D were overexpressed in Escherichia coli, isolated, and kinetically characterized. In H233D, DEPC targets one less histidine than was measured using wild-type lyase, supporting the assignment of wild-type lyase His-233 as one of the DEPC targets. Substitution of His-233 results in diminution of activity by approximately 4 orders of magnitude. Km values of the mutant lyases for both substrate HMG-CoA and activator divalent cation (Mg2+ or Mn2+) are comparable to the values measured for wild-type enzyme, indicating that these enzymes retain substantial structural integrity. This conclusion is reinforced by the observation that the affinity label, 2-butynoyl-CoA, stoichiometrically modifies the mutant lyases, indicating that they contain a full complement of active sites. In view of these data suggesting that the structures of these mutant lyases closely approximate that of the wild-type enzyme, their observed 10(4)-fold diminution in catalytic efficiency supports assignment to His-233 of a role in the chemistry of HMG-CoA cleavage.

J. Biol. Chem. 271:24604-24609(1996) [PubMed] [Europe PMC]

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health