Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Cloning and biochemical characterization of the cyclophilin homologues from the free-living nematode Caenorhabditis elegans.

Page A.P., Macniven K., Hengartner M.O.

Cyclosporin A (CsA) is the most widely used immunosuppressive agent, whose properties are exerted via an interaction with cyclophilin, resulting in down-regulation of signal-transduction events in the T-cell. Cyclophilin is identical with peptidylprolyl cis-trans isomerase (PPI; EC 5.2.1.8), an enzyme which catalyses the isomerization between the two proline conformations in proteins, thereby acting as a catalyst in protein-folding events. Several reports indicate that CsA has potent anti-parasitic activity, effective against both protozoan and helminth species. In order to understand the various biological roles that cyclophilins play we have initiated a study of these proteins in the genetically tractable nematode Caenorhabditis elegans. Here we describe the cloning and characterization of 11 cyclophilin genes (cyp-1 to -11) derived from this nematode; this is currently the greatest number of isoforms described in a single species. Southern blotting and physical mapping indicated that these genes are dispersed throughout the nematode genome. A high degree of conservation exists between several isoforms, which also share characteristics with the ubiquitous isoforms previously described. The remaining isoforms are divergent, having altered CsA-binding domains and additional non-cyclophilin domains, which may impart compartmental specificity. Ten of these isoforms have been expressed in Escherichia coli, and the resultant fusion proteins have been examined biochemically for PPI activity, which they all possess. Isomerase activity is highest in the conserved and lowest in divergent isoforms, perhaps indicating a more specific substrate for the latter. Analysis of the C. elegans cyp genes will provide answers as to the roles played by cyclophilins in protein folding and signal transduction.

Biochem. J. 317:179-185(1996) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again