Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

T-cell activation leads to rapid stimulation of translation initiation factor eIF2B and inactivation of glycogen synthase kinase-3.

Welsh G.I., Miyamoto S., Price N.T., Safer B., Proud C.G.

Mitogenic stimulation of T-lymphocytes causes a rapid activation or protein synthesis, which reflects in part increased expression of many translation components. Their levels, however, rise more slowly than the rate of protein synthesis, indicating an enhancement of the efficiency of their utilization. Initiation factor eIF2B catalyzes a key regulatory step in the initiation of translation, and we have therefore studied its activity following T-cell activation. eIF2B activity rises quickly, increasing as early as 5 min after cell stimulation. This initial phase is followed by an additional slow but substantial increase in eIF2B activity. The level of eIF2B subunits did not change over the initial rapid phase but did increase at later time points. Northern analysis revealed that levels of eIF2B mRNA only rose during the later phase. The rapid activation of EIF2B following mitogenic stimulation of T-cells is therefore mediated by factors other than its own concentration. The largest (epsilon) subunit of eIF2B is a substrate for glycogen synthase kinase-3 (GSK-3), the activity of which rapidly decreases following T-cell activation. Since phosphorylation of eIF2B by GSK-3 appears to inhibit nucleotide exchange in vitro, this provides a potential mechanism by which eIF2B may be activated.

J. Biol. Chem. 271:11410-11413(1996) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again