Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

The crystal structure of succinyl-CoA synthetase from Escherichia coli at 2.5-A resolution.

Wolodko W.T., Fraser M.E., James M.N.G., Bridger W.A.

The x-ray crystal structure of succinyl-CoA synthetase (SCS) from Escherichia coli has been determined by the method of multiple isomorphous replacement to a resolution of 2.5 A. Crystals of SCS are tetragonal with a space group of P4(3)22 and unit cell dimensions of a = b = 98.47 A and c = 400.6 A. One molecule of SCS (142 kDa) is contained in the asymmetric unit. The current model has been refined to a conventional R factor of 21.6% with root mean square deviations from ideal stereochemistry of 0.022 A for bond lengths and 3.25 degrees for bond angles. The quaternary organization of the E. coli enzyme is an alpha 2 beta 2 heterotetramer. In this tetramer, the alpha-subunits interact only with the beta-subunits, whereas the beta-subunits interact to form the dimer of alpha beta-dimers. The two active site pockets are located at regions of contact between alpha- and beta-subunits. One molecule of coenzyme A is bound to each alpha-subunit at a typical nucleotide-binding motif, and His-246 of each alpha-subunit is phosphorylated. This phosphohistidine, a catalytic intermediate, is stabilized by two helix dipoles (the "power" helices), one from each of the two subunit types. A short segment of the beta-subunit from one alpha beta-dimer is in close proximity to the CoA-binding site of the other alpha beta-dimer, providing a possible rationale for the overall tetrameric structure.

J. Biol. Chem. 269:10883-10890(1994) [PubMed] [Europe PMC]

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health