Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

ATP-stimulated interaction between epidermal growth factor receptor and supercoiled DNA.

Mroczkowski B., Mosig G., Cohen S.

The receptor for epidermal growth factor (EGF) has been identified as a transmembrane glycoprotein that has tyrosine-specific kinase activity. The kinase activity of the receptor is enhanced in the presence of EGF (or related peptides), and the phosphorylation of a number of substrates, as well as autophosphorylation of the receptor, has been reported. Analogous findings have been described for the insulin receptor and the receptor for platelet-derived growth factor (PDGF). Thus, a number of hormone receptors and several viral transforming proteins appear to share the highly unusual property of tyrosine-specific kinase activity. Nevertheless, the specific relationship between tyrosine kinase activity and the control of cell growth and replication is unknown. It is known that after the initial binding of EGF to the plasma membrane, the hormone together with its receptor is rapidly internalized in endocytic vesicles and the hormone is eventually degraded in lysosomes. It is possible that the function of EGF is simply to stimulate internalization of its receptor, and that as a result of its altered location the receptor is able to phosphorylate a cytoplasmic component or even interact directly with a nuclear component. We now report that the purified receptor for EGF is able to interact with and nick supercoiled double-stranded DNA in an ATP-stimulated manner.

Nature 309:270-273(1984) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again