Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

The 7q11.23 protein DNAJC30 interacts with ATP synthase and links mitochondria to brain development.

Tebbenkamp A.T.N., Varela L., Choi J., Paredes M.I., Giani A.M., Song J.E., Sestan-Pesa M., Franjic D., Sousa A.M.M., Liu Z.W., Li M., Bichsel C., Koch M., Szigeti-Buck K., Liu F., Li Z., Kawasawa Y.I., Paspalas C.D., Mineur Y.S., Prontera P., Merla G., Picciotto M.R., Arnsten A.F.T., Horvath T.L., Sestan N.

Despite the known causality of copy-number variations (CNVs) to human neurodevelopmental disorders, the mechanisms behind each gene's contribution to the constellation of neural phenotypes remain elusive. Here, we investigated the 7q11.23 CNV, whose hemideletion causes Williams syndrome (WS), and uncovered that mitochondrial dysfunction participates in WS pathogenesis. Dysfunction is facilitated in part by the 7q11.23 protein DNAJC30, which interacts with mitochondrial ATP-synthase machinery. Removal of Dnajc30 in mice resulted in hypofunctional mitochondria, diminished morphological features of neocortical pyramidal neurons, and altered behaviors reminiscent of WS. The mitochondrial features are consistent with our observations of decreased integrity of oxidative phosphorylation supercomplexes and ATP-synthase dimers in WS. Thus, we identify DNAJC30 as an auxiliary component of ATP-synthase machinery and reveal mitochondrial maladies as underlying certain defects in brain development and function associated with WS.

Cell 0:0-0(2018) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again