Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Isolation and expression of a complementary DNA that confers multidrug resistance.

Gros P., Ben Neriah Y.B., Croop J.M., Housman D.E.

The emergence and outgrowth of a population of tumour cells resistant to multiple drugs is a major problem in the chemotherapeutic treatment of cancer. We have used highly drug-resistant cell lines developed in vitro to study the molecular basis of multidrug resistance. In these cell lines high levels of resistance are frequently associated with amplification and overexpression of a small group of genes termed mdr or gp170. Direct evaluation of the role of these genes in multidrug resistance has awaited the isolation of a member of this gene family in a biologically active form. Here we report the isolation of DNA clones complementary to the cellular messenger RNA transcripts of mdr genes and show that high-level expression of a full-length complementary DNA clone in an otherwise drug-sensitive cell confers a complete multidrug-resistant phenotype. Our results demonstrate that overexpression of a single member of the mdr group is sufficient to confer drug resistance. Furthermore, because the cDNA was isolated from a drug-sensitive cell, mutations in the primary sequence of mdr are not required to produce a multidrug-resistance phenotype.

Nature 323:728-731(1986) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again