Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Proteome-wide dataset supporting the study of ancient metazoan macromolecular complexes.

Phanse S., Wan C., Borgeson B., Tu F., Drew K., Clark G., Xiong X., Kagan O., Kwan J., Bezginov A., Chessman K., Pal S., Cromar G., Papoulas O., Ni Z., Boutz D.R., Stoilova S., Havugimana P.C., Guo X., Malty R.H., Sarov M., Greenblatt J., Babu M., Derry W.B., Tillier E.R., Wallingford J.B., Parkinson J., Marcotte E.M., Emili A.

Our analysis examines the conservation of multiprotein complexes among metazoa through use of high resolution biochemical fractionation and precision mass spectrometry applied to soluble cell extracts from 5 representative model organisms Caenorhabditis elegans, Drosophila melanogaster, Mus musculus, Strongylocentrotus purpuratus, and Homo sapiens. The interaction network obtained from the data was validated globally in 4 distant species (Xenopus laevis, Nematostella vectensis, Dictyostelium discoideum, Saccharomyces cerevisiae) and locally by targeted affinity-purification experiments. Here we provide details of our massive set of supporting biochemical fractionation data available via ProteomeXchange (PXD002319-PXD002328), PPIs via BioGRID (185267); and interaction network projections via (http://metazoa.med.utoronto.ca) made fully accessible to allow further exploration. The datasets here are related to the research article on metazoan macromolecular complexes in Nature [1].

Data Brief 6:715-721(2016) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again