Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

CTCF recruits centromeric protein CENP-E to the pericentromeric/centromeric regions of chromosomes through unusual CTCF-binding sites.

Xiao T., Wongtrakoongate P., Trainor C., Felsenfeld G.

The role of CTCF in stabilizing long-range interactions between chromatin sites essential for maintaining nuclear architecture is well established. Most of these interactions involve recruitment of the cohesin complex to chromatin via CTCF. We find that CTCF also interacts with the centromeric protein CENP-E both in vitro and in vivo. We identified CTCF sites in pericentric/centromeric DNA and found that, early in mitosis, CTCF binds and recruits CENP-E to these sites. Unlike most known CTCF genomic sites, the CTCF-binding sites in the pericentric/centromeric regions interact strongly with the C-terminal fingers of CTCF. Overexpression of a small CENP-E fragment, targeted to these CTCF sites, results in a delay in alignment of some chromosomes during mitosis, suggesting that the recruitment of CENP-E by CTCF is physiologically important. We conclude that CTCF helps recruit CENP-E to the centromere during mitosis and that it may do so through a structure stabilized by the CTCF/CENP-E complex.

Cell Rep. 12:1704-1714(2015) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again