Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

TM9SF4 is a novel V-ATPase-interacting protein that modulates tumor pH alterations associated with drug resistance and invasiveness of colon cancer cells.

Lozupone F., Borghi M., Marzoli F., Azzarito T., Matarrese P., Iessi E., Venturi G., Meschini S., Canitano A., Bona R., Cara A., Fais S.

An inverted pH gradient across the cell membranes is a typical feature of malignant cancer cells that are characterized by extracellular acidosis and cytosol alkalization. These dysregulations are able to create a unique milieu that favors tumor progression, metastasis and chemo/immune-resistance traits of solid tumors. A key event mediating tumor cell pH alterations is an aberrant activation of ion channels and proton pumps such as (H+)-vacuolar-ATPase (V-ATPase). TM9SF4 is a poorly characterized transmembrane protein that we have recently shown to be related to cannibal behavior of metastatic melanoma cells. Here, we demonstrate that TM9SF4 represents a novel V-ATPase-associated protein involved in V-ATPase activation. We have observed in HCT116 and SW480 colon cancer cell lines that TM9SF4 interacts with the ATP6V1H subunit of the V-ATPase V1 sector. Suppression of TM9SF4 with small interfering RNAs strongly reduces assembly of V-ATPase V0/V1 sectors, thus reversing tumor pH gradient with a decrease of cytosolic pH, alkalization of intracellular vesicles and a reduction of extracellular acidity. Such effects are associated with a significant inhibition of the invasive behavior of colon cancer cells and with an increased sensitivity to the cytotoxic effects of 5-fluorouracil. Our study shows for the first time the important role of TM9SF4 in the aberrant constitutive activation of the V-ATPase, and the development of a malignant phenotype, supporting the potential use of TM9SF4 as a target for future anticancer therapies.

Oncogene 34:5163-5174(2015) [PubMed] [Europe PMC]

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health