Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Modification of ASC1 by UFM1 is crucial for ERalpha transactivation and breast cancer development.

Yoo H.M., Kang S.H., Kim J.Y., Lee J.E., Seong M.W., Lee S.W., Ka S.H., Sou Y.S., Komatsu M., Tanaka K., Lee S.T., Noh D.Y., Baek S.H., Jeon Y.J., Chung C.H.

Biological roles for UFM1, a ubiquitin-like protein, are largely unknown, and therefore we screened for targets of ufmylation. Here we show that ufmylation of the nuclear receptor coactivator ASC1 is a key step for ERα transactivation in response to 17β-estradiol (E2). In the absence of E2, the UFM1-specific protease UfSP2 was bound to ASC1, which maintains ASC1 in a nonufmylated state. In the presence of E2, ERα bound ASC1 and displaced UfSP2, leading to ASC1 ufmylation. Polyufmylation of ASC1 enhanced association of p300, SRC1, and ASC1 at promoters of ERα target genes. ASC1 overexpression or UfSP2 knockdown promoted ERα-mediated tumor formation in vivo, which could be abrogated by treatment with the anti-breast cancer drug tamoxifen. In contrast, expression of ufmylation-deficient ASC1 mutant or knockdown of the UFM1-activating E1 enzyme UBA5 prevented tumor growth. These findings establish a role for ASC1 ufmylation in breast cancer development by promoting ERα transactivation.

Mol. Cell 56:261-274(2014) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again