Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Ccdc13 is a novel human centriolar satellite protein required for ciliogenesis and genome stability.

Staples C.J., Myers K.N., Beveridge R.D., Patil A.A., Howard A.E., Barone G., Lee A.J., Swanton C., Howell M., Maslen S., Skehel J.M., Boulton S.J., Collis S.J.

Here, we identify coiled-coil domain-containing protein 13 (Ccdc13) in a genome-wide RNA interference screen for regulators of genome stability. We establish that Ccdc13 is a newly identified centriolar satellite protein that interacts with PCM1, Cep290 and pericentrin and prevents the accumulation of DNA damage during mitotic transit. Depletion of Ccdc13 results in the loss of microtubule organisation in a manner similar to PCM1 and Cep290 depletion, although Ccdc13 is not required for satellite integrity. We show that microtubule regrowth is enhanced in Ccdc13-depleted cells, but slowed in cells that overexpress Ccdc13. Furthermore, in serum-starved cells, Ccdc13 localises to the basal body, is required for primary cilia formation and promotes the localisation of the ciliopathy protein BBS4 to both centriolar satellites and cilia. These data highlight the emerging link between DNA damage response factors, centriolar and peri-centriolar satellites and cilia-associated proteins and implicate Ccdc13 as a centriolar satellite protein that functions to promote both genome stability and cilia formation.

J. Cell Sci. 127:2910-2919(2014) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again