Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Hsp70 and Hsp90 oppositely regulate TGF-beta signaling through CHIP/Stub1.

Shang Y., Xu X., Duan X., Guo J., Wang Y., Ren F., He D., Chang Z.

Transforming growth factor-β (TGF-β) signaling plays an important role in regulation of a wide variety of cellular processes. Canonical TGF-β signaling is mediated by Smads which were further regulated by several factors. We previously reported that E3 ubiquitin ligase CHIP (carboxyl terminus of Hsc70-interacting protein, also named Stub1) controlled the sensitivity of TGF-β signaling by modulating the basal level of Smad3 through ubiquitin-mediated degradation. Here, we present evidence that Hsp70 and Hsp90 regulate the complex formation of Smad3/CHIP. Furthermore, we observed that over-expressed Hsp70 or inhibition of Hsp90 by geldanamycin (GA) leads to facilitated CHIP-induced ubiquitination and degradation of Smad3, which finally enhances TGF-β signaling. In contrast, over-expressed Hsp90 antagonizes CHIP mediated Smad3 ubiquitination and degradation and desensitizes cells in response to TGF-β signaling. Taken together, our data reveal an opposite role of Hsp70 and Hsp90 in regulating TGF-β signaling by implicating CHIP-mediated Smad3 ubiquitination and degradation. This study provides a new insight into understanding the regulation of the TGF-β signaling by chaperones.

Biochem. Biophys. Res. Commun. 446:387-392(2014) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again