Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Calsyntenins function as synaptogenic adhesion molecules in concert with neurexins.

Um J.W., Pramanik G., Ko J.S., Song M.Y., Lee D., Kim H., Park K.S., Sudhof T.C., Tabuchi K., Ko J.

Multiple synaptic adhesion molecules govern synapse formation. Here, we propose calsyntenin-3/alcadein-β as a synapse organizer that specifically induces presynaptic differentiation in heterologous synapse-formation assays. Calsyntenin-3 (CST-3) is highly expressed during various postnatal periods of mouse brain development. The simultaneous knockdown of all three CSTs, but not CST-3 alone, decreases inhibitory, but not excitatory, synapse densities in cultured hippocampal neurons. Moreover, the knockdown of CSTs specifically reduces inhibitory synaptic transmission in vitro and in vivo. Remarkably, the loss of CSTs induces a concomitant decrease in neuron soma size in a non-cell-autonomous manner. Furthermore, α-neurexins (α-Nrxs) are components of a CST-3 complex involved in CST-3-mediated presynaptic differentiation. However, CST-3 does not directly bind to Nrxs. Viewed together, these data suggest that the three CSTs redundantly regulate inhibitory synapse formation, inhibitory synapse function, and neuron development in concert with Nrxs.

Cell Rep 6:1096-1109(2014) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again