Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Haploinsufficiency of SAMD9L, an endosome fusion facilitator, causes myeloid malignancies in mice mimicking human diseases with monosomy 7.

Nagamachi A., Matsui H., Asou H., Ozaki Y., Aki D., Kanai A., Takubo K., Suda T., Nakamura T., Wolff L., Honda H., Inaba T.

Monosomy 7 and interstitial deletion of 7q (-7/7q-) are well-recognized nonrandom chromosomal abnormalities frequently found among patients with myelodysplastic syndromes (MDSs) and myeloid leukemias. We previously identified candidate myeloid tumor suppressor genes (SAMD9, SAMD9-like = SAMD9L, and Miki) in the 7q21.3 subband. We established SAMD9L-deficient mice and found that SAMD9L(+/-) mice as well as SAMD9L(-/-) mice develop myeloid diseases resembling human diseases associated with -7/7q-. SAMD9L-deficient hematopoietic stem cells showed enhanced colony formation potential and in vivo reconstitution ability. SAMD9L localizes in early endosomes. SAMD9L-deficient cells showed delays in homotypic endosome fusion, resulting in persistence of ligand-bound cytokine receptors. These findings suggest that haploinsufficiency of SAMD9L and/or SAMD9 gene(s) contributes to myeloid transformation.

Cancer Cell 24:305-317(2013) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again