Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Nuclear-localized Asunder regulates cytoplasmic dynein localization via its role in the integrator complex.

Jodoin J.N., Sitaram P., Albrecht T.R., May S.B., Shboul M., Lee E., Reversade B., Wagner E.J., Lee L.A.

We previously reported that Asunder (ASUN) is essential for recruitment of dynein motors to the nuclear envelope (NE) and nucleus-centrosome coupling at the onset of cell division in cultured human cells and Drosophila spermatocytes, although the mechanisms underlying this regulation remain unknown. We also identified ASUN as a functional component of Integrator (INT), a multisubunit complex required for 3'-end processing of small nuclear RNAs. We now provide evidence that ASUN acts in the nucleus in concert with other INT components to mediate recruitment of dynein to the NE. Knockdown of other individual INT subunits in HeLa cells recapitulates the loss of perinuclear dynein in ASUN-small interfering RNA cells. Forced localization of ASUN to the cytoplasm via mutation of its nuclear localization sequence blocks its capacity to restore perinuclear dynein in both cultured human cells lacking ASUN and Drosophila asun spermatocytes. In addition, the levels of several INT subunits are reduced at G2/M when dynein is recruited to the NE, suggesting that INT does not directly mediate this step. Taken together, our data support a model in which a nuclear INT complex promotes recruitment of cytoplasmic dynein to the NE, possibly via a mechanism involving RNA processing.

Mol. Biol. Cell 24:2954-2965(2013) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again