Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Reference genome sequence of the model plant Setaria.

Bennetzen J.L., Schmutz J., Wang H., Percifield R., Hawkins J., Pontaroli A.C., Estep M., Feng L., Vaughn J.N., Grimwood J., Jenkins J., Barry K., Lindquist E., Hellsten U., Deshpande S., Wang X., Wu X., Mitros T., Triplett J., Yang X., Ye C.Y., Mauro-Herrera M., Wang L., Li P., Sharma M., Sharma R., Ronald P.C., Panaud O., Kellogg E.A., Brutnell T.P., Doust A.N., Tuskan G.A., Rokhsar D., Devos K.M.

We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The ∼400-Mb assembly covers ∼80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species that demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).

Nat Biotechnol 30:555-561(2012) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again