Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Phosphatidylinositol 4-kinase IIalpha is palmitoylated by Golgi-localized palmitoyltransferases in cholesterol-dependent manner.

Lu D., Sun H.Q., Wang H., Barylko B., Fukata Y., Fukata M., Albanesi J.P., Yin H.L.

Phosphatidylinositol 4-kinase IIα (PI4KIIα) is predominantly Golgi-localized, and it generates >50% of the phosphatidylinositol 4-phosphate in the Golgi. The lipid kinase activity, Golgi localization, and "integral" membrane binding of PI4KIIα and its association with low buoyant density "raft" domains are critically dependent on palmitoylation of its cysteine-rich (173)CCPCC(177) motif and are also highly cholesterol-dependent. Here, we identified the palmitoyl acyltransferases (Asp-His-His-Cys (DHHC) PATs) that palmitoylate PI4KIIα and show for the first time that palmitoylation is cholesterol-dependent. DHHC3 and DHHC7 PATs, which robustly palmitoylated PI4KIIα and were colocalized with PI4KIIα in the trans-Golgi network (TGN), were characterized in detail. Overexpression of DHHC3 or DHHC7 increased PI4KIIα palmitoylation by >3-fold, whereas overexpression of the dominant-negative PATs or PAT silencing by RNA interference decreased PI4KIIα palmitoylation, "integral" membrane association, and Golgi localization. Wild-type and dominant-negative DHHC3 and DHHC7 co-immunoprecipitated with PI4KIIα, whereas non-candidate DHHC18 and DHHC23 did not. The PI4KIIα (173)CCPCC(177) palmitoylation motif is required for interaction because the palmitoylation-defective SSPSS mutant did not co-immunoprecipitate with DHHC3. Cholesterol depletion and repletion with methyl-β-cyclodextrin reversibly altered PI4KIIα association with these DHHCs as well as PI4KIIα localization at the TGN and "integral" membrane association. Significantly, the Golgi phosphatidylinositol 4-phosphate level was altered in parallel with changes in PI4KIIα behavior. Our study uncovered a novel mechanism for the preferential recruitment and activation of PI4KIIα to the TGN by interaction with Golgi- and raft-localized DHHCs in a cholesterol-dependent manner.

J. Biol. Chem. 287:21856-21865(2012) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again