Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Phenotypes of vesicular stomatitis virus mutants with mutations in the PSAP motif of the matrix protein.

Obiang L., Raux H., Ouldali M., Blondel D., Gaudin Y.

Vesicular stomatitis virus (VSV) matrix protein (M) has a flexible amino-terminal part that recruits cellular partners. It contains a dynamin-binding site that is required for efficient virus assembly, and two motifs, (24)PPPY(27) and (37)PSAP(40), that constitute potential late domains. Late domains are present in proteins of several enveloped viruses and are involved in the ultimate step of the budding process (i.e. fission between viral and cellular membranes). In baby hamster kidney (BHK)-21 cells, it has been demonstrated that the (24)PPPY(27) motif binds the Nedd4 (neuronal precursor cell-expressed developmentally downregulated 4) E3 ubiquitin ligase for efficient virus budding and that the (37)PSAP(40) motif, although conserved among M proteins of vesiculoviruses, does not possess late-domain activity. In this study, we have re-examined the contribution of the PSAP motif to VSV budding. First, we demonstrate that VSV M indeed binds TSG101 [tumour susceptibility gene 101; a component of the ESCRT1 (endosomal sorting complex required for transport 1)] through its PSAP motif. Second, we analysed the phenotype of several recombinant mutants. We show that a double mutant with point mutations in both the PSAP and the PPPY motifs is impaired compared with a single mutant in the PPPY motif, indicating that the PSAP motif partially compensates for the lack of the PPPY motif. Mutants' phenotypes depend on cell lines: in CERA (chicken embryo-related, Alger clone) cells, a recombinant virus with a single mutation in the PSAP motif was impaired compared with the wild type, and a mutant with a single mutation in the dynamin-binding motif was much less impaired in Vero cells than in BSR (clones of BHK-21) cells. These results have implications for the VSV budding pathway that will be discussed.

J. Gen. Virol. 93:857-865(2012) [PubMed] [Europe PMC]

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health