Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Casted-immobilization downregulates glucocorticoid receptor expression in rat slow-twitch soleus muscle.

Sato S., Suzuki H., Tsujimoto H., Shirato K., Tachiyashiki K., Imaizumi K.

AIMS: Glucocorticoids bind to the glucocorticoid receptor (GR) and increase catabolism of muscle proteins via the ubiquitin-proteasome pathway. Activation of β(2)-adrenergic receptor (β(2)-AR) in skeletal muscle has been shown to induce muscle hypertrophy by promoting muscle protein synthesis and/or attenuating protein degradation. The aim of this study was to investigate the correlation between disuse-induced muscle atrophy, and expression of GR and β(2)-AR. METHODS: Rats were subjected to casted-immobilization (knee and foot arthrodesis), a model for muscle disuse, for 10 days. Fast-twitch (extensor digitorum longus: EDL) and slow-twitch (soleus: SOL) muscles were isolated and subsequently used for analysis. The expression of GR and β(2)-AR was analyzed by real-time RT-PCR and western blotting. In addition, we analyzed plasma catecholamine and corticosterone concentrations by ELISA. KEY FINDINGS: Casted-immobilization-induced muscle atrophy was much greater in the SOL muscle than in the EDL muscle. Casted-immobilization decreased the expression of GR mRNA and protein in the SOL muscle but not in the EDL muscle. Although the expression of β(2)-AR protein in the cytosol and membrane-rich fractions was not changed by casted-immobilization in either muscle, casted-immobilization decreased the expression of β(2)-AR mRNA in the SOL muscle. Plasma catecholamine and corticosterone concentrations, however, were largely unaffected by casted-immobilization during the experimental period. SIGNIFICANCE: This study provides evidence that casted-immobilization-induced muscle disuse downregulates GR expression in slow-twitch muscle. These results suggest that muscle disuse suppresses glucocorticoid signals, such as muscle protein breakdown and transcription of the β(2)-AR gene, via downregulation of GR expression in slow-twitch muscle.

Life Sci. 89:962-967(2011) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again