Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Comparative analysis of fluorescence resonance energy transfer (FRET) and proximity ligation assay (PLA).

Mocanu M.M., Varadi T., Szollosi J., Nagy P.

Both fluorescence resonance energy transfer (FRET) and proximity ligation assay (PLA) are techniques used in the investigation of protein interactions but the latter has not been evaluated in a systematic way, prompting us to compare their performance quantitatively. Proteins were labeled with oligonucleotide- or fluorophore-conjugated antibodies and their proximity was analyzed by flow cytometry in order to obtain statistically robust data. Both intermolecular and intramolecular PLA signals reached saturation at high expression levels. At the same time, the FRET efficiency was independent of, while the FRET signal exhibited a strict linear correlation with the expression levels of proteins. When the density of oligonucleotide- and fluorophore-conjugated antibodies was systematically changed by competition with unlabeled antibodies the FRET signal was linearly proportional to the amount of bound fluorophore-tagged antibodies, whereas the PLA signal was again saturated. The saturation phenomenon in PLA could not be eliminated by decreasing the duration of the rolling circle amplification reaction. Our data imply that PLA is a semiquantitative measure of protein colocalizations due to non-linear effects in the reaction and that caution should be exercised when interpreting PLA data in a quantitative way.

Proteomics 11:2063-2070(2011) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again