Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Phosphorylation of RIG-I by casein kinase II inhibits its antiviral response.

Sun Z., Ren H., Liu Y., Teeling J.L., Gu J.

RIG-I is an intracellular RNA virus sensor that mediates a signaling pathway that triggers the alpha/beta interferon (IFN-α/β) immune defenses. However, the mechanism for regulation of RIG-I activity remains largely unknown. Here we show that RIG-I activity is regulated by phosphorylation and dephosphorylation in its repressor domain (RD). Threonine at amino acid (aa) 770 and serine at aa 854 to 855 of RIG-I are phosphorylated by casein kinase II (CK2) in the resting state of the cell and dephosphorylated when cells are infected by RNA virus. Mutation at aa position 770 or 854 to 855 of RIG-I renders it constitutively active. Pharmacological inhibition of CK2 enhances virus-induced expression of IFN-β and suppresses virus proliferation, while inhibition of phosphatase reduces virus-induced expression of IFN-β. Overexpression of CK2 suppresses RIG-I-mediated signaling, while silencing of CK2 results in the increased suppression of virus proliferation. Our results reveal a novel mechanism of the regulation of RIG-I activity during RNA virus infection.

J. Virol. 85:1036-1047(2011) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again