Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Aurora B interacts with NIR-p53, leading to p53 phosphorylation in its DNA-binding domain and subsequent functional suppression.

Wu L., Ma C.A., Zhao Y., Jain A.

NIR (novel INHAT repressor) is a transcriptional co-repressor with inhibitor of histone acetyltransferase (INHAT) activity and has previously been shown to physically interact with and suppress p53 transcriptional activity and function. However, the mechanism by which NIR suppresses p53 is not completely understood. Using a proteomic approach, we have identified the Aurora kinase B as a novel binding partner of NIR. We show that Aurora B, NIR and p53 exist in a protein complex in which Aurora B binds to NIR, thus also indirectly associates with p53. Functionally, overexpression of Aurora B or NIR suppresses p53 transcriptional activity, and depletion of Aurora B or NIR causes p53-dependent apoptosis and cell growth arrest, due to the up-regulation of p21 and Bax. We then demonstrate that Aurora B phosphorylates multiple sites in the p53 DNA-binding domain in vitro, and this phosphorylation probably also occurs in cells. Importantly, the Aurora B-mediated phosphorylation on Ser(269) or Thr(284) significantly compromises p53 transcriptional activity. Taken together, these results provide novel insight into NIR-mediated p53 suppression and also suggest an additional way for p53 regulation.

J. Biol. Chem. 286:2236-2244(2011) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again