Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Priming and extending: a UbcH5/Cdc34 E2 handoff mechanism for polyubiquitination on a SCF substrate.

Wu K., Kovacev J., Pan Z.Q.

We describe a mechanistic model of polyubiquitination by the SCF(beta TrCP2) E3 ubiquitin (Ub) ligase using human I kappaB alpha as a substrate. Biochemical reconstitution experiments revealed that the polyubiquitination of I kappaB alpha began with the action of the UbcH5 E2 Ub-conjugating enzyme, transferring a single Ub to I kappaB alpha K21/K22 rapidly and efficiently. Subsequently, the Cdc34 E2 functioned in the formation of polyubiquitin chains. It was determined that a Ub fused at I kappaB alpha K21 acts as a receptor, directing Cdc34 for rapid and efficient K48-linked Ub chain synthesis that depends on SCF(beta TrCP2) and the substrate's N terminus. The I kappaB alpha-linked fusion Ub appears to mediate direct contacts with Cdc34 and the SCF's RING subcomplex. Taken together, these results suggest a role for the multifaceted interactions between the I kappaB alpha K21/K22-linked receptor Ub, the SCF's RING complex, and Cdc34 approximately S approximately Ub in establishing the optimal orientation of the receptor Ub to drive conjugation.

Mol. Cell 37:784-796(2010) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again