Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Complete sequence and model for the A2 subunit of the carotenoid pigment complex, crustacyanin.

Keen J.N., Caceres I., Eliopoulos E.E., Zagalsky P.F., Findlay J.B.C.

The complete sequence has been determined for the A2 subunit of crustacyanin, an astaxanthin-binding protein from the carapace of the lobster Homarus gammarus. The polypeptide chain is 174 residues long and is similar to proteins of the retinol-binding protein superfamily. Some regions of the sequence are most similar to the retinol-binding protein, beta-lactoglobulin subgroup, while the disulphide bonding pattern is more akin to that seen in the porphyrin binding proteins insecticyanin and bilin-binding protein. It is beginning to appear as though this superfamily of proteins, characterized by a similar gross structural framework, may be further subdivided into interrelated subclasses. Model building based on the coordinates of the known structure of human plasma retinol-binding protein and on empirical prediction algorithms has allowed the putative identification of side-chains which line the binding cavity. This pocket is larger than in retinol binding protein and beta-lactoglobulin but does not allow the carotenoid to adopt a folded conformation. The amino acid composition of the pocket does not support a 'charge-shift'-type hypothesis to support the bathochromic shift phenomenon which takes place on interaction of the chromophore with the protein. Instead aromatic side-chains may play a prominent role.

Eur. J. Biochem. 197:407-417(1991) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again