Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Genetic interaction between Lrp6 and Wnt5a during mouse development.

Andersson E.R., Bryjova L., Biris K., Yamaguchi T.P., Arenas E., Bryja V.

Lrp6 is generally described as a receptor required for signal transduction in the Wnt/beta-catenin pathway. Wnt5a, however, is a Wnt ligand that usually does not activate Wnt/beta-catenin but rather activates noncanonical Wnt signaling. We have previously shown that Lrp6 can inhibit noncanonical Wnt5a/Wnt11 signaling and that Lrp5/6 loss-of-function produces noncanonical gain-of function defects, which can be rescued by loss of Wnt5a. Here, we describe other phenotypes found in Wnt5a/Lrp6 compound mutant mice, including a worsening of individual Wnt5a or Lrp6 loss of function phenotypes. Lrp6 haploinsufficiency in a Wnt5a-/-background caused spina bifida and exacerbated posterior truncation. Wnt5a-/-Lrp6-/-embryos displayed presomitic mesoderm morphogenesis, somitogenesis, and neurogenesis defects, which are much more severe than in either of the single mutants. Interestingly these results reveal a further level of complexity in processes in which Wnt5a and LRP6 cooperate, or oppose each other, during mouse development.

Dev. Dyn. 239:237-245(2010) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again