Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Sumoylation regulates nuclear localization of lipin-1alpha in neuronal cells.

Liu G.H., Gerace L.

Lipin-1 is a protein that has dual functions as a phosphatidic acid phosphohydrolase (PAP) and a nuclear transcriptional coactivator. It remains unknown how the nuclear localization and coactivator functions of lipin-1 are regulated. Here, we show that lipin-1 (including both the alpha and beta isoforms) is modified by sumoylation at two consensus sumoylation sites. We are unable to detect sumoylation of the related proteins lipin-2 and lipin-3. Lipin-1 is sumoylated at relatively high levels in brain, where lipin-1alpha is the predominant form. In cultured embryonic cortical neurons and SH-SY5Y neuronal cells, ectopically expressed lipin-1alpha is localized in both the nucleus and the cytoplasm, and the nuclear localization is abrogated by mutating the consensus sumyolation motifs. The sumoylation site mutant of lipin-1alpha loses the capacity to coactivate the transcriptional (co-) activators PGC-1alpha and MEF2, consistent with its nuclear exclusion. Thus, these results show that sumoylation facilitates the nuclear localization and transcriptional coactivator behavior of lipin-1alpha that we observe in cultured neuronal cells, and suggest that lipin-1alpha may act as a sumoylation-regulated transcriptional coactivator in brain.

PLoS ONE 4:E7031-E7031(2009) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again