Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Structure of the diaminopimelate epimerase DapF from Mycobacterium tuberculosis.

Usha V., Dover L.G., Roper D.I., Futterer K., Besra G.S.

The meso (or D,L) isomer of diaminopimelic acid (DAP), a precursor of L-lysine, is a key component of the pentapeptide linker in bacterial peptidoglycan. While the peptidoglycan incorporated in the highly complex cell wall of the pathogen Mycobacterium tuberculosis structurally resembles that of Escherichia coli, it is unique in that it can contain penicillin-resistant meso-DAP-->meso-DAP linkages. The interconversion of L,L-DAP and meso-DAP is catalysed by the DAP epimerase DapF, a gene product that is essential in M. tuberculosis. Here, the crystal structure of the ligand-free form of M. tuberculosis DapF (MtDapF) refined to a resolution of 2.6 A is reported. MtDapF shows small if distinct deviations in secondary structure from the two-domain alpha/beta-fold of the known structures of Haemophilus influenzae DapF and Bacillus anthracis DapF, which are in line with its low sequence identity (

Acta Crystallogr. D 65:383-387(2009) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again