Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Synaptic transmission block by presynaptic injection of oligomeric amyloid beta.

Moreno H., Yu E., Pigino G., Hernandez A.I., Kim N., Moreira J.E., Sugimori M., Llinas R.R.

Early Alzheimer's disease (AD) pathophysiology is characterized by synaptic changes induced by degradation products of amyloid precursor protein (APP). The exact mechanisms of such modulation are unknown. Here, we report that nanomolar concentrations of intraaxonal oligomeric (o)Abeta42, but not oAbeta40 or extracellular oAbeta42, acutely inhibited synaptic transmission at the squid giant synapse. Further characterization of this phenotype demonstrated that presynaptic calcium currents were unaffected. However, electron microscopy experiments revealed diminished docked synaptic vesicles in oAbeta42-microinjected terminals, without affecting clathrin-coated vesicles. The molecular events of this modulation involved casein kinase 2 and the synaptic vesicle rapid endocytosis pathway. These findings open the possibility of a new therapeutic target aimed at ameliorating synaptic dysfunction in AD.

Proc Natl Acad Sci U S A 106:5901-5906(2009) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again