Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis.

Haeder S., Wirth R., Herz H., Spiteller D.

Leaf-cutting ants such as Acromyrmex octospinosus live in obligate symbiosis with fungi of the genus Leucoagaricus, which they grow with harvested leaf material. The symbiotic fungi, in turn, serve as a major food source for the ants. This mutualistic relation is disturbed by the specialized pathogenic fungus Escovopsis sp., which can overcome Leucoagaricus sp. and thus destroy the ant colony. Microbial symbionts of leaf-cutting ants have been suggested to protect the fungus garden against Escovopsis by producing antifungal compounds [Currie CR, Scott JA, Summerbell RC, Malloch D (1999) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398:701-704.]. To date, however, the chemical nature of these compounds has remained elusive. We characterized 19 leaf-cutting ant-associated microorganisms (5 Pseudonocardia, 1 Dermacoccus, and 13 Streptomyces) from 3 Acromyrmex species, A. octospinosus, A. echinatior, and A. volcanus, using 16S-rDNA analysis. Because the strain Streptomyces sp. Ao10 proved highly active against the pathogen Escovopsis, we identified the molecular basis of its antifungal activity. Using bioassay-guided fractionation, high-resolution electrospray mass spectrometry (HR-ESI-MS), and UV spectroscopy, and comparing the results with an authentic standard, we were able identify candicidin macrolides. Candicidin macrolides are highly active against Escovopsis but do not significantly affect the growth of the symbiotic fungus. At least one of the microbial isolates from each of the 3 leaf-cutting ant species analyzed produced candicidin macrolides. This suggests that candicidins play an important role in protecting the fungus gardens of leaf-cutting ants against pathogenic fungi.

Proc. Natl. Acad. Sci. U.S.A. 106:4742-4746(2009) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again