Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins.

Doil C., Mailand N., Bekker-Jensen S., Menard P., Larsen D.H., Pepperkok R., Ellenberg J., Panier S., Durocher D., Bartek J., Lukas J., Lukas C.

DNA double-strand breaks (DSBs) not only interrupt the genetic information, but also disrupt the chromatin structure, and both impairments require repair mechanisms to ensure genome integrity. We showed previously that RNF8-mediated chromatin ubiquitylation protects genome integrity by promoting the accumulation of repair factors at DSBs. Here, we provide evidence that, while RNF8 is necessary to trigger the DSB-associated ubiquitylations, it is not sufficient to sustain conjugated ubiquitin in this compartment. We identified RNF168 as a novel chromatin-associated ubiquitin ligase with an ability to bind ubiquitin. We show that RNF168 interacts with ubiquitylated H2A, assembles at DSBs in an RNF8-dependent manner, and, by targeting H2A and H2AX, amplifies local concentration of lysine 63-linked ubiquitin conjugates to the threshold required for retention of 53BP1 and BRCA1. Thus, RNF168 defines a new pathway involving sequential ubiquitylations on damaged chromosomes and uncovers a functional cooperation between E3 ligases in genome maintenance.

Cell 136:435-446(2009) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again