Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Direct interaction of SNARE complex binding protein synaphin/complexin with calcium sensor synaptotagmin 1.

Tokumaru H., Shimizu-Okabe C., Abe T.

Although the binding of synaphin (also called complexin) to the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex is critical for synaptic vesicle exocytosis, the exact role of synaphin remains unclear. Here, we show that synaphin directly binds to synaptotagmin 1, a major Ca(2+) sensor for fast neurotransmitter release, in a 1:1 stoichiometry. Mapping of the synaphin site involved in synaptotagmin 1 binding revealed that the C-terminal region is essential for the interaction between these two proteins. Binding was sensitive to ionic strength, suggesting the involvement of charged residues in the C-terminus region. Mutation of the seven consecutive glutamic acid residues (residues 108-114) at the C-terminal region of synaphin to alanines or glutamines resulted in a dramatic reduction in synaptotagmin 1 binding activity. Furthermore, a peptide from the C-terminus of synaphin (residues 91-124) blocked the binding of synaptotagmin 1 to synaphin, an effect that was abolished by mutating the consecutive glutamic acid residues to alanine. Immunoprecipitation experiments with brain membrane extracts showed the presence of a complex consisting of synaphin, synaptotagmin 1, and SNAREs. We propose that synaphin recruits synaptotagmin 1 to the SNARE-based fusion complex and synergistically functions with synaptotagmin 1 in mediating fast synaptic vesicle exocytosis.

Brain Cell Biol 36:173-189(2008) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again