Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Agonist-directed trafficking of signalling at serotonin 5-HT2A, 5-HT2B and 5-HT2C-VSV receptors mediated Gq/11 activation and calcium mobilisation in CHO cells.

Cussac D., Boutet-Robinet E., Ailhaud M.C., Newman-Tancredi A., Martel J.C., Danty N., Rauly-Lestienne I.

Several examples of agonist-directed trafficking of receptor signalling at 5-HT2A and 5-HT2C receptors have been reported that involve independent downstream transduction pathways. We now report the functional selectivity of a series of chemically diverse agonists at human (h)5-HT2A, h5-HT2B and h5-HT2C-VSV by examining two related responses, the upstream activation of Gq/11 proteins in comparison with its associated cascade of calcium mobilisation. At the h5-HT2A receptor, d-lysergic acid diethylamide (LSD) and the antiparkinsonian agents lisuride, bromocriptine and pergolide exhibit a higher potency for Gq/11 activation than calcium release in contrast with all the other tested ligands such as 5-HT, mCPP and BW723C86, that show an opposite preference of signalling pathway. Comparable observations are made at h5-HT2B and h5-HT2C-VSV receptors, suggesting a similar mechanism of functional selectivity for the three serotonin receptors. Interestingly, the non-hallucinogenic compound lisuride behaves as a partial agonist for both Gq/11 activation and calcium release at the three 5-HT2 receptors, in contrast with DOI, LSD, pergolide and bromocriptine, which are known to provoke hallucinations, and behave as more efficacious agonists. Hence, a functional selectivity for Gq/11 activation together with a threshold of efficacy at h5-HT2A (and possibly h5-HT2B and/or h5-HT2C-VSV) may contribute to hallucinogenic liability. Thus, our results extend the notion of agonist-directed trafficking of receptor signalling to all the 5-HT2-receptor family and indicate that measures of Gq/11 activation versus calcium release may be useful to identify more effective therapeutic drugs with limited side effects.

Eur. J. Pharmacol. 594:32-38(2008) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again