Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Physiological sites of deamidation and methyl esterification in sensory transducers of Halobacterium salinarum.

Koch M.K., Staudinger W.F., Siedler F., Oesterhelt D.

In Halobacterium salinarum, up to 18 sensory transducers (Htrs) relay environmental stimuli to an intracellular signaling system to induce tactic responses. As known from the extensively studied enterobacterial system, sensory adaptation to persisting stimulus intensities involves reversible methylation of certain transducer glutamate residues, some of which originate from glutamine residues by deamidation. This study analyzes the in vivo deamidation and methylation of membrane-bound Htrs under physiological conditions. Electrospray ionization tandem mass spectrometry of chromatographically separated proteolytic peptides identified 19 methylation sites in 10 of the 12 predicted membrane-spanning Htrs. Matrix-assisted laser desorption/ionization mass spectrometry additionally detected three sites in two soluble Htrs. Sensory transducers contain a cytoplasmic coiled-coil region, composed of hydrophobic heptads, seven-residue repeats in which the first and the fourth residues are mostly hydrophobic. All identified Htr methylations occurred at glutamate residues at the second and/or third position of such heptads. In addition to singly methylated pairs of glutamate and/or glutamine residues, we identified singly methylated aspartate-glutamate and alanine-glutamate pairs and doubly methylated glutamate pairs. The largest methylatable regions detected in Htrs comprise six heptads along the coiled coil. One methylated glutamate residue was detected outside of such a region, in the signaling region of Htr14. Our analysis produced evidence supporting the predicted methyltransferase and methylesterase activities of halobacterial CheR and CheB, respectively. It furthermore demonstrated that CheB is required for Htr deamidations, at least at a specific glutamine-glutamate pair in Htr2 and a specific aspartate-glutamine pair in Htr4. Compared to previously reported methods, the described approach significantly facilitates the identification of physiological transducer modification sites.

J. Mol. Biol. 380:285-302(2008) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again