Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Two-dimensional infrared spectra of isotopically diluted amyloid fibrils from Abeta40.

Kim Y.S., Liu L., Axelsen P.H., Hochstrasser R.M.

The 2D IR spectra of the amide-I vibrations of amyloid fibrils from Abeta40 were obtained. The matured fibrils formed from strands having isotopic substitution by (13)C (18)O at Gly-38, Gly-33, Gly-29, or Ala-21 show vibrational exciton spectra having reduced dimensionality. Indeed, linear chain excitons of amide units are seen, for which the interamide vibrational coupling is measured in fibrils grown from 50% and 5% mixtures of labeled and unlabeled strands. The data prove that the 1D excitons are formed from parallel in-register sheets. The coupling constants show that for each of the indicated residues the amide carbonyls in the chains are separated by 0.5 +/-0.05 nm. The isotope replacement of Gly-25 does not reveal linear excitons, consistent with the region of the strand having a different structure distribution. The vibrational frequencies of the amide-I modes, freed from effects of amide vibrational excitation exchange by 5% dilution experiments, point to there being a component of an electric field along the fibril axis that increases through the sequence Gly-38, Gly-33, Gly-29. The field is dominated by side chains of neighboring residues.

Proc Natl Acad Sci U S A 105:7720-7725(2008) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again