Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Platinum-based inhibitors of amyloid-beta as therapeutic agents for Alzheimer's disease.

Barnham K.J., Kenche V.B., Ciccotosto G.D., Smith D.P., Tew D.J., Liu X., Perez K., Cranston G.A., Johanssen T.J., Volitakis I., Bush A.I., Masters C.L., White A.R., Smith J.P., Cherny R.A., Cappai R.

Amelyoid-beta peptide (Abeta) is a major causative agent responsible for Alzheimer's disease (AD). Abeta contains a high affinity metal binding site that modulates peptide aggregation and toxicity. Therefore, identifying molecules targeting this site represents a valid therapeutic strategy. To test this hypothesis, a range of L-PtCl(2) (L = 1,10-phenanthroline derivatives) complexes were examined and shown to bind to Abeta, inhibit neurotoxicity and rescue Abeta-induced synaptotoxicity in mouse hippocampal slices. Coordination of the complexes to Abeta altered the chemical properties of the peptide inhibiting amyloid formation and the generation of reactive oxygen species. In comparison, the classic anticancer drug cisplatin did not affect any of the biochemical and cellular effects of Abeta. This implies that the planar aromatic 1,10-phenanthroline ligands L confer some specificity for Abeta onto the platinum complexes. The potent effect of the L-PtCl(2) complexes identifies this class of compounds as therapeutic agents for AD.

Proc Natl Acad Sci U S A 105:6813-6818(2008) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again