Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

A nitric oxide-inducible lactate dehydrogenase enables Staphylococcus aureus to resist innate immunity.

Richardson A.R., Libby S.J., Fang F.C.

Staphylococcus aureus is one of the most successful human pathogens, colonizing 2 billion individuals worldwide and causing invasive infections even in immunocompetent hosts. S. aureus can evade multiple components of host innate immunity, including the antimicrobial radical nitric oxide (NO.) produced by activated phagocytes. We show that S. aureus is capable of metabolically adapting to nitrosative stress by expressing an NO.-inducible L-lactate dehydrogenase (ldh1, SACOL0222) divergently transcribed from the NO.-detoxifying flavohemoglobin (hmp). L-Lactate production allows S. aureus to maintain redox homeostasis during nitrosative stress and is essential for virulence. NO.-inducible lactate dehydrogenase activity and NO. resistance distinguish S. aureus from the closely related commensal species S. epidermidis and S. saprophyticus.

Science 319:1672-1676(2008) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again