Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Protein kinase C delta induces transcription of the TP53 tumor suppressor gene by controlling death-promoting factor Btf in the apoptotic response to DNA damage.

Liu H., Lu Z.G., Miki Y., Yoshida K.

Expression of the TP53 tumor suppressor is tightly controlled for its ability to function as a critical regulator of cell growth, proliferation, and death in response to DNA damage. However, little is known about the mechanisms and contributions of the transcriptional regulation of TP53. Here we report that protein kinase C delta (PKCdelta), a ubiquitously expressed member of the novel subfamily of PKC isoforms, transactivates TP53 expression at the transcriptional level. Reporter assays demonstrated that PKCdelta induces the promoter activity of TP53 through the TP53 core promoter element (CPE-TP53) and that such induction is enhanced in response to DNA damage. The results also demonstrate that, upon exposure to genotoxic stress, PKCdelta activates and interacts with the death-promoting transcription factor Btf to co-occupy CPE-TP53. Inhibition of PKCdelta activity decreases the affinity of Btf for CPE-TP53, thereby reducing TP53 expression at both the mRNA and the protein levels. In concert with these results, we show that disruption of Btf-mediated TP53 gene transcription by RNA interference leads to suppression of TP53-mediated apoptosis following genotoxic stress. These findings provide evidence that activation of TP53 gene transcription by PKCdelta triggers TP53-dependent apoptosis in response to DNA damage.

Mol. Cell. Biol. 27:8480-8491(2007) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again