Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1.

Bruey J.M., Bruey-Sedano N., Luciano F., Zhai D., Balpai R., Xu C., Kress C.L., Bailly-Maitre B., Li X., Osterman A., Matsuzawa S., Terskikh A.V., Faustin B., Reed J.C.

Caspases are intracellular proteases that cleave substrates involved in apoptosis or inflammation. In C. elegans, a paradigm for caspase regulation exists in which caspase CED-3 is activated by nucleotide-binding protein CED-4, which is suppressed by Bcl-2-family protein CED-9. We have identified a mammalian analog of this caspase-regulatory system in the NLR-family protein NALP1, a nucleotide-dependent activator of cytokine-processing protease caspase-1, which responds to bacterial ligand muramyl-dipeptide (MDP). Antiapoptotic proteins Bcl-2 and Bcl-X(L) bind and suppress NALP1, reducing caspase-1 activation and interleukin-1beta (IL-1beta) production. When exposed to MDP, Bcl-2-deficient macrophages exhibit more caspase-1 processing and IL-1beta production, whereas Bcl-2-overexpressing macrophages demonstrate less caspase-1 processing and IL-1beta production. The findings reveal an interaction of host defense and apoptosis machinery.

Cell 129:45-56(2007) [PubMed] [Europe PMC]

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health