Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

N-terminal iron-mediated self-cleavage of human frataxin: regulation of iron binding and complex formation with target proteins.

Yoon T., Dizin E., Cowan J.A.

Frataxin is an iron-binding mitochondrial matrix protein that has been shown to mediate iron delivery during iron-sulfur cluster and heme biosynthesis. Mitochondrial processing peptidase (MPP) yields a form of human frataxin corresponding to residues 56-210. However, structural and functional studies have focused on a core structure that results from an ill-defined cleavage event at the N-terminus. Herein we show that the N-terminus of MPP-processed frataxin shows a unique high-affinity iron site and that this iron center appears to mediate a self-cleavage reaction. Moreover, the N-terminus appears to block previously defined iron-binding sites located on the carboxylate-rich surface defined by the helix (alpha1) and the beta-sheet (beta1), most likely through electrostatic contact with the carboxylate-rich surface on the core protein, as well as inhibiting iron-promoted binding of the iron-sulfur cluster assembly scaffold partner protein, ISU. The physiological significance of iron-mediated release of the N-terminal residues from this anionic surface is discussed.

J. Biol. Inorg. Chem. 12:535-542(2007) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again