Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Denopamine stimulates alveolar fluid clearance via cystic fibrosis transmembrane conductance regulator in rat lungs.

Gu X., Wang Z., Xu J., Maeda S., Sugita M., Sagawa M., Toga H., Sakuma T.

OBJECTIVE: The objective of this study was to test the hypothesis that cystic fibrosis transmembrane conductance regulator (CFTR) plays a role in beta(1)-adrenergic agonist-stimulated alveolar fluid clearance. METHODS: Isotonic 5% albumin solutions containing different pharmacological agents were instilled into the alveolar spaces of the isolated rat lungs. The lungs were inflated with 100% oxygen at an airway pressure of 7 cm H(2)O and placed in a humidified incubator at 37 degrees C. Alveolar fluid clearance was estimated by the progressive increase in the albumin concentration over 1 h. To test the hypothesis, we determined whether CFTR Cl(-) channel inhibitors (glibenclamide and CFTR(inh)-172) inhibited the effect of denopamine, a beta(1)-adrenergic agonist, on stimulation of alveolar fluid clearance in the isolated rat lungs. RESULTS: Denopamine increased alveolar fluid clearance in a dose-dependent manner. Atenolol, a beta(1)-adrenergic antagonist, abolished the effects of denopamine on stimulation of alveolar fluid clearance. Although glibenclamide alone or CFTR(inh)-172 alone did not change basal alveolar fluid clearance, these CFTR inhibitors inhibited the effect of denopamine on alveolar fluid clearance. CONCLUSION: CFTR plays a role in beta(1)-adrenergic agonist-stimulated alveolar fluid clearance in rat lungs.

Respirology 11:566-571(2006) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again