Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Diversity and evolution of conotoxins based on gene expression profiling of Conus litteratus.

Pi C., Liu J., Peng C., Liu Y., Jiang X., Zhao Y., Tang S., Wang L., Dong M., Chen S., Xu A.

Cone snails are attracting increasing scientific attention due to their unprecedented diversity of invaluable channel-targeted peptides. As arguably the largest and most successful evolutionary genus of invertebrates, Conus also may become the model system to study the evolution of multigene families and biodiversity. Here, a set of 897 expressed sequence tags (ESTs) derived from a Conus litteratus venom duct was analyzed to illuminate the diversity and evolution mechanism of conotoxins. Nearly half of these ESTs represent the coding sequences of conotoxins, which were grouped into 42 novel conotoxin cDNA sequences (seven superfamilies), with T-superfamily conotoxins being the dominant component. The gene expression profile of conotoxin revealed that transcripts are expressed with order-of-magnitude differences, sequence divergence within a superfamily increases from the N to the C terminus of the open reading frame, and even multiple scaffold-different mature peptides exist in a conotoxin gene superfamily. Most excitingly, we identified a novel conotoxin superfamily and three novel cysteine scaffolds. These results give an initial insight into the C. litteratus transcriptome that will contribute to a better understanding of conotoxin evolution and the study of the cone snail genome in the near future.

Genomics 88:809-819(2006) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again