Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Suppression of viral RNA recombination by a host exoribonuclease.

Cheng C.-P., Serviene E., Nagy P.D.

RNA viruses of humans, animals, and plants evolve rapidly due to mutations and RNA recombination. A previous genome-wide screen in Saccharomyces cerevisiae, a model host, identified five host genes, including XRN1, encoding a 5'-3' exoribonuclease, whose absence led to an approximately 10-to 50-fold enhancement of RNA recombination in Tomato bushy stunt virus (E. Serviene, N. Shapka, C. P. Cheng, T. Panavas, B. Phuangrat, J. Baker, and P. D. Nagy, Proc. Natl. Acad. Sci. USA 102:10545-10550, 2005). In this study, we found abundant 5'-truncated viral RNAs in xrn1delta mutant strains but not in the parental yeast strains, suggesting that these RNAs might serve as recombination substrates promoting RNA recombination in xrn1delta mutant yeast. This model is supported by data showing that an enhanced level of viral recombinant accumulation occurred when two different 5'-truncated viral RNAs were expressed in the parental and xrn1delta mutant yeast strains or electroporated into plant protoplasts. Moreover, we demonstrate that purified Xrn1p can degrade the 5'-truncated viral RNAs in vitro. Based on these findings, we propose that Xrn1p can suppress viral RNA recombination by rapidly removing the 5'-truncated RNAs, the substrates of recombination, and thus reducing the chance for recombination to occur in the parental yeast strain. In addition, we show that the 5'-truncated viral RNAs are generated by host endoribonucleases. Accordingly, overexpression of the Ngl2p endoribonuclease led to an increased accumulation of cleaved viral RNAs in vivo and in vitro. Altogether, this paper establishes that host ribonucleases and host-mediated viral RNA turnover play major roles in RNA virus recombination and evolution.

J. Virol. 80:2631-2640(2006) [PubMed] [Europe PMC]

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health