Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Raf-1 sets the threshold of Fas sensitivity by modulating Rok-alpha signaling.

Piazzolla D., Meissl K., Kucerova L., Rubiolo C., Baccarini M.

Ablation of the Raf-1 protein causes fetal liver apoptosis, embryonic lethality, and selective hypersensitivity to Fas-induced cell death. Furthermore, Raf-1-deficient cells show defective migration as a result of the deregulation of the Rho effector kinase Rok-alpha. In this study, we show that the kinase-independent modulation of Rok-alpha signaling is also the basis of the antiapoptotic function of Raf-1. Fas activation stimulates the formation of Raf-1-Rok-alpha complexes, and Rok-alpha signaling is up-regulated in Raf-1-deficient cells. This leads to increased clustering and membrane expression of Fas, which is rescued both by kinase-dead Raf-1 and by interfering with Rok-alpha or its substrate ezrin. Increased Fas clustering and membrane expression are also evident in the livers of Raf-1-deficient embryos, and genetically reducing Fas expression counteracts fetal liver apoptosis, embryonic lethality, and the apoptotic defects of embryonic fibroblasts. Thus, Raf-1 has an essential function in regulating Fas expression and setting the threshold of Fas sensitivity during embryonic life.

J. Cell Biol. 171:1013-1022(2005) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again