Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission.

Gromley A., Yeaman C., Rosa J., Redick S., Chen C.-T., Mirabelle S., Guha M., Sillibourne J., Doxsey S.J.

The terminal step in cytokinesis, called abscission, requires resolution of the membrane connection between two prospective daughter cells. Our previous studies demonstrated that the coiled-coil protein centriolin localized to the midbody during cytokinesis and was required for abscission. Here we show that centriolin interacts with proteins of vesicle-targeting exocyst complexes and vesicle-fusion SNARE complexes. These complexes require centriolin for localization to a unique midbody-ring structure, and disruption of either complex inhibits abscission. Exocyst disruption induces accumulation of v-SNARE-containing vesicles at the midbody ring. In control cells, these v-SNARE vesicles colocalize with a GFP-tagged secreted polypeptide. The vesicles move to the midbody ring asymmetrically from one prospective daughter cell; the GFP signal is rapidly lost, suggesting membrane fusion; and subsequently the cell cleaves at the site of vesicle delivery/fusion. We propose that centriolin anchors protein complexes required for vesicle targeting and fusion and integrates membrane-vesicle fusion with abscission.

Cell 123:75-87(2005) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again